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hydride, 108-24-7; benzoyl chloride, 98-88-4; acrylic anhydride, 
2051-76-5; 2-oxocyclopentane-l-carboxanilide, 4874-65-1; 2-oxocy- 
clohexane-1-carboxanilide, 51089-06-6; 2-oxocyclohexane-1-N-eth- 
ylcarhoxanilide, 64163-89-9; 1-N-morpholinocyclohexene, 670-80-4; 
e thy l  isocyanate, 109-90-0; 3-chloropropenoyl chloride, 3721-36-6; 
2-aminocyclohexene-l-N-ethylcarhoxamide, 64163-90-2; N,N- 
diethylacetoacetamide, 2235-46-3; &unino-N,N- diethylcrotonamide, 
64163-91-3. 

Supplementary Material Available. Further  synthetic details 
(7  pages) plus ampli f ied mass spectral data and in terpretat ion (16 
pages). Order ing in format ion is given o n  any current masthead 
page. 
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Reaction o f  a-amino acids with o-benzoquinones of t ype  3 i s  un ique in that the  expected Strecker degradation 
does no t  occur. W e  have observed t h a t  a decarboxylative condensation reaction takes place affording benzoxazoles. 
T h e  new reaction appears t o  be general for a-amino acids and specific for quinones of type 3. 

I t  has been reported tha t  several diones (including 0-qui- 
nones) oxidize a-amino acids to aldehydes while being reduced 
to  a-amino carbonyls' (see eq 1). This reaction has been 

+ 'OZ ( l )  

radation appeared to be the  most suitable method since the 
complexity and sensitivity of 1 warrants mild handling. Fur-  
thermore, the use of commercially available 3,5-di-tert-but- 
ylbzoquinone (3) appeared to be the most suitable dione since 
the steric bulk of the tert -butyl groups would prevent unde- 
sirable 1,4 addition of the amino acid, and the formation of 
an aromatic moiety (the reduced a-amino carbonyl now being x 0' 

, - RCHO + H,N 

CO,H 

We were interested in oxidizing the antibiotic a-amino acid 
1 to  the corresponding aldehyde 2 (eq 2). The  Strecker deg- 

Results and Discussion 
- Amino acid 1 reauired 2 eauiv of auinone 3 for comde te  

reaction. However, instead of isolating the  desired aldehyde 
2 and the o-aminophenol, the benzoxazole 4 and catechol 5 
were obtained (eq 3). 

This oxidation reaction appears to  be general for a-amino 
acids since alanine, a-aminoadipic acid, and phenylalanine 
all yielded the corresponding benzoxazoles3 when treated with 
2 equiv of 3. The reaction with phenylalanine is complicated 
by a few minor side reactions; however, fair to  good yields of 
pure products may be isolated by chromatography (see Ex- 

u 
II  

- (CH,), ( 2 )  
FHR OCH, I1 

($2)2 /:"-f~ "1' CH,OC(=O)NH? CHO I 
CHNHz CO,H 

CO,H 

2, R = s u b s t i t u t e d  
c e p h a m y c i n  I 

1 perimental Section). 
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Predicted 4 , b  P r e d i c t e d  5 , 7  Observed 

Figure 1. Predicted 13C chemical shift values for 4,6- and 5,7-disub- 
stituted benzoxazo1es.j Experimental values for 6. 

3 
R’ = tert-butyl 

R l  

4 

Rl 
5 

This unique reaction appears to  be specific for 3,5-disub- 
stituted quinones since complex mixtures were obtained with 
other diones (2,3-butanedione, 1,2-~yclohexanedione, 1,2- 
naphthoquinone, 9,10-phenanthroquinone, o-benzoquinone, 
and 4-tert -butylbenzoquinone). Furthermore, we were unable 
to  obtain any evidence for oxazole formation with the  above 
diones and alanine. The normal Strecker degradation occurs 
to some extent with these diones as indicated by the formation 
of some phenylacetaldehyde when phenylalanine was used. 
We feel tha t  the propensity for amino acids to  react in a 1,4 
fashion with unsubstituted quinones removes the possibility 
for benzoxazole formation, which requires a 1,2 addition. 
Scheme I provides a suitable explanation for the  formation 
of benzoxazoles from amino acids and o-quinones. 

Benzoxazoles have also been prepared from primary amines 
of the type RCHzNH2* and quinone 3. Thus, the reaction 
described herein establishes an analogy between certain pri- 

Scheme I 

R. = tert-butyl 

I 
R R 

+ 
-0 

R 

mary amines and a-amino acids when reacted with quinone 
3 (see eq 4). When 3 was allowed to  react with either alanine 
or ethylamine, the same benzoxazole was obtained (6, R = 
CH3) as shown by thin-layer chromatography, mass spec- 
troscopy, and nuclear magnetic resonance spectroscopy, which 
also proves 5,7 disubstitution (see Figure 1). 

2 RCHPNHP (4) 
,“2 

RCH 
‘C02H 

6 
The reaction may be simplified by using 1 equiv of catechol 

in the presence of an oxidizing agent. In this manner alanine 
was converted in good yield to 2-methyl-5,7-di-tert-butyl- 
benzoxazole by treatment of its tetraethylammonium salt with 
1 equiv each of 3,5-di-tert-butylcatechol and manganese 
dioxide in acetonitrile for 20 min a t  room temperature. This  
modification avoids the necessity of performing the quinone 
and removing the equivalent of catechol formed from the 
oxidation of the intermediate (see Scheme I). Furthermore, 
the manganese dioxide is not necessary since stirring an ace- 
tonitrile solution of the amino acid salt and quinone in an open 
vessel for three days affords good yields of substituted ben- 
zoxazoles (see Experimental Section). 

This new reaction of a-amino acids thus constitutes a viable 
method for preparing disubstituted (and higher) benzoxa- 
zoles. 

Experimental Section 
2-Methyl-5,7-di- tert-butylbenzoxazole (6). A solution of 0.445 

g (5.00 mmol) of alanine and 2.95 g (5.00 mmol) of tetraethylammo- 
nium hydroxide, 25% aqueous solution, was concentrated at  reduced 
pressure until about 180 mg of water remained. To the concentrate 
were added 50 mL of acetonitrile and 1.10 g (5.00 mmol) of 3,5-di- 
tert-butyl-o-benzoquinone. The dark colored solution, after being 
stirred 3 days unstoppered, was concentrated at  reduced pressure. 
The residue was taken up in diethyl ether and extracted twice with 
HzO, once with dilute HCl (aqueous), twice with HzO, and twice with 
saturated NaCl (aqueous). The ether solution was dried (MgSOd), 
filtered, and concentrated at  reduced pressure to give 1.09 g (80%) of 
6:3 NMR (acetone-d6, internal Me&) 6 7.39 (d, J = 2 Hz, 1 H), 7.20 
(d, J = 2 Hz, 1 H), 2.55 (s,3 H), 1.46 (s,9 H), 1.37 (s, 9 H); mass spec- 
trum, mle 245 (M+, 171, 230 (1000,174 (15). 

2-Benzyl-5,7-di- tert-butylbenzoxazole (7). A solution of 0.540 
g (8.88 mmol) of 88.8% sodium methoxide and 1.467 g (8.88 mmol) of 
8-phenylalanine in 60 mL of methanol was concentrated at  reduced 
pressure to 16 mL. 3,5-Di-tert-butyl-o-benzoquinone (1.954 g, 8.88 
mmol) was added, and the reaction mixture was stirred for 18 h. The 
reaction was partitioned between ice water and diethyl ether, the 
layers were separated, and the organic phase was extracted twice with 
1 N NaOH, twice with HzO, and once with saturated NaCl (aqueous). 
the organic phase was dried (MgSOd), filtered, and concentrated at  
reduced pressure. The residue was taken up in hexane and chroma- 
tographed on silica gel (hexane-Etz0,20:1) to give 0.451 g (32%) of 
7:3 NMR (acetone-&, internal Mersi) 6 7.44 (d, J = 2 Hz, 1 H), 7.26 
(broads, 6 H), 4.25 (9, 2 H), 1.41 (s, 9 H), 1.34 (s, 9 H). 

5,7-Bis( tert-butyl)-2-benzoxazolylbutanoic Acid (8). To a 
solution of 243 mg (4 mmol) of 88.8% sodium methoxide and 322 mg 
(2 mmol) of aminoadipic acid in 10 mL of methanol was added 441 
mg (2 mmol) of 3,5-di-tert-butyl-o-benzoquinone. After 15 min, the 
dark blue solution was concentrated at  reduced pressure. The residue 
was partitioned between ice water and diethyl ether, the layers were 
separated, and the aqueous phase was further extracted until the ether 
layer was colorless. The aqueous phase was adjusted to pH 2.5 and 
extracted twice with diethyl ether. The latter ether extracts were dried 
(MgS04), filtered, and concentrated at  reduced pressure to afford 330 
mg (52%) of NMR (acetone-&, internal Me4Si) 6 7.50 (d, J = 2 Hz, 
1 H), 7.28 (d, J = 2 Hz, 1 H), 3.69 (s, 3 HI, 2.99 (broad t, J = 7 Hz, 2 
H), 1.90-2.60 (complex m, 4 H), 1.45 (s, 9 H), 1.34 (s, 9 H); mass 
spectrum, m/e 331 (M+, 14), 316 (22), 299 (22), 258 (loo), 232 (45). 

ymethyl-7-methoxy-3-cephem-4-carboxylic Acid Carbamate 
(4). A solution of 1.22 g (20 mmol) of 88.8% sodium methoxide in 150 
mL of methanol was cooled to -5 ‘C and charged with 10.0 g (20 

7-[5,7-Bis( tert-butyl)-2-benzoxazolyl]butyramido-3-hydrox~ 
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mmol) of 1. Upon dissolution, 4.41 g (20 mmol) of 3,5-di-tert-butyl- 
o-benzoquinone was added, the reaction stirred 1 h, an additional 4.41 
g (20 mmol) of the quinone added, and stirring continued for 30 min. 
The reaction was partitioned between ice water and diethyl ether, the 
pH was adjusted to 8, the layers were separated, and the aqueous 
phase was extracted three more times with ether. The combined ethyl 
acetate extracts were dried (Na2S04), filtered, and concentrated at 
reduced pressure to yield 8.07 g (67%) of 4:3 NMR (acetone-&, in- 
ternal Me4Si) 6 8.27 (broad s, 1 H), 7.48 (d, J = 2 Hz, 1 H), 7.28 (d, J 
= 2 Hz, 1 H), 5.91 (broads, 2 H), 5.12 (s, 1 H), 4.86 (AB center, J = 13 
Hz, 2 H), 3.82 (s, 3 H), 3.48 (broads, 5 H), 3.07 (broad t, 2 H), 2.16-2.75 
(complex m, 4 Hi, 1.47 (s, 9 H), 1.35 (s, 9 H); mass spectrum (methyl 
ester), mle 616 (M+, l l ) ,  615 (26), 555 (61), 554 (100). 

Registry No.-I, 64162-09-0; 3, 3383-21-9; 4, 64130-72-9; 6, 
64130-73-0; 7,64147-38-2; 8,64130-74-1; alanine, 56-41-7; 8-phenyl- 
alanine, 63-91-2; aminoadipic acid, 542-32-5. 
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Convenient first syntheses have been devised for the following bipyrimidines: 6-(2-hydroxypyrimidin-4-yl)thy- 
mine, Thy(6-4)Pyo (1); 6-(2-hydroxypyrimidin-4-yl)uracil, Ura(6-4)Pyo (2); 6-(2-hydroxy-5-methylpyrimidin-4- 
yl)thymine, Thy(6-4)m5Pyo (3); and 6-(2-hydroxy-5-methylpyrimidin-4-yl)uracil, Ura(6-4)m5Pyo (4). The first 
three of these are among the non-cyclobutane photoproducts resulting from DNA or from frozen aqueous solutions 
of thymine, thymidine, uracil, or uridine under appropriate conditions. The synthetic methodology involved (1) 
the combination of 6-lithiopyrimidines with 6-alkoxyacroleins, (2) oxidation to the corresponding masked 8-dicar- 
bony1 intermediates, (3) condensation of these with guanidine carbonate to form substituted aminobipyrimidines, 
and (4) diazotization and hydrolysis to furnish the desired products 1-4. The spectroscopic properties, especially 
the ultraviolet excitation and fluorescence emission. are of special interest within the series and in comparison with 
the photoproducts of natural origin. 

Considerable interest has been displayed in  the isolation 
and  identification of photoproducts of DNA as a means of 
investigating possible photobiological implications. Along with 
the  familiar pyrimidine photodimers of the  cyclobutane 
structure,' a series of bipyrimidine photoproducts has been 
accumulated by Wang and Varghese, exemplified by formulas 
1-3.2 (As drawn, these formulas are  not intended t o  portray 

1, Tny(6-4 )Pyo 2, Ura(6-4)Pyo 
0 0 

0 
3, Thy(6-4)m'Pyo 4, Ura(6-4)m'Pyo 

a preferred torsional geometry.) The first of these, Thy(6- 
4)Pyo (1),3 was identified as a product from the trifluoroacetic 
acid hydrolysates of DNA irradiated with far-UV light@ and 
from photolysis of a frozen solution of thymine and uracil.' 
Ura(6-4)Pyo (2) was isolated from the UV irradiation of uracil 
in frozen aqueous solution8 and from the  acid hydrolysates 
of uridine irradiated in  frozen aqueous solution? Thy(6-4)- 
m5Pyo (3) was obtained from the  UV irradiation of frozen 
solutions of thyminelOJ1 and of thymidine,'* followed by acid 
treatment. 

As par t  of our continuing interest in the  structure deter- 
mination and synthesis of nucleic acid radiation products,1~17 
we have devised unequivocal syntheses of compounds 1-3 
which also provide independent confirmation of their assigned 
structures. We have also synthesized Ura(6-4)m5Pyo (4) as 
a potential photoproduct which is theoretically accessible by 
a photoadduction pathway similar t o  tha t  suggested for 
Ura(6-4)Py0.~ 

An examination of the literature discloses several synthetic 
routes to  bipyrimidines. Symmetrical 2,2'-, 4,4'-, and 5,5'- 
bipyrimidines have been obtained via an Ullmann or a Busch 
coupling r e a c t i ~ n . ~ ~ . ' ~  Symmetrical 4,4'- and 5,5'-bipyrimi- 
dines have also been prepared via construction of the  carbon 
backbone followed by condensation with 2 equiv of a urea 
d e r i ~ a t i v e . ~ O - ~ ~  Unsymmetrical 2,2'- and 2,4'-bipyrimidines 
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